Géométrie dans l'Espace

1. Vecteurs dans l'Espace:

Définition:

Un vecteur dans l'espace est une flèche qui possède une direction, un sens et une longueur. Il peut être représenté par ses coordonnées dans un système de coordonnées cartésiennes.

Coordonnées d'un vecteur :

Si (\overrightarrow{AB}) est un vecteur dont les points A et B ont pour coordonnées respectivement $(A(x_1, y_1, z_1))et(B(x_2, y_2, z_2))$, alors les coordonnées de (\overrightarrow{AB}) sont :

$$[\overrightarrow{AB} = (x_2 - x_1, y_2 - y_1, z_2 - z_1)]$$

Exemple 1:

Soit (A(1,2,3))et(B(4,6,8)). Trouvez les coordonnées du vecteur (\overrightarrow{AB}) .

Solution:

Les coordonnées de (\overrightarrow{AB}) sont :

$$[\overrightarrow{AB} = (4 - 1,6 - 2,8 - 3) = (3,4,5)]$$

2. Produits Scalaires:

Définition:

Le produit scalaire de deux vecteurs $(\vec{u} = (u_1, u_2, u_3))$ et $(\vec{v} = (v_1, v_2, v_3))$ est donné par :

$$[\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + u_3 v_3]$$

Exemple 2:

Soit $(\vec{u} = (2, -1, 3))et(\vec{v} = (4, 0, -2))$. Trouvez le produit scalaire $(\vec{u} \cdot \vec{v})$.

Solution:

Le produit scalaire est :

$$[\vec{u} \cdot \vec{v} = (2 \cdot 4) + (-1 \cdot 0) + (3 \cdot -2) = 8 + 0 - 6 = 2]$$

3. Plan dans l'Espace:

Définition:

Un plan dans l'espace peut être défini par une équation de la forme :

$$[ax + by + cz = d]$$

Où ((a, b, c)) est un vecteur normal au plan.

Exemple 3:

Trouvez l'équation du plan passant par les points (A(1,2,3)), (B(4,0,-1))et(C(0,1,2)).

Solution:

1. Trouvez deux vecteurs dans le plan : (\overrightarrow{AB}) et (\overrightarrow{AC}) .

$$\overrightarrow{AB} = (4 - 1, 0 - 2, -1 - 3) = (3, -2, -4)$$

$$\overrightarrow{AC} = (0 - 1, 1 - 2, 2 - 3) = (-1, -1, -1)$$

2. Calculez le produit vectoriel $(\overrightarrow{AB} \times \overrightarrow{AC})$ pour trouver le vecteur normal au plan.

$$ec{AB} imes ec{AC} = egin{array}{ccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \ 3 & -2 & -4 \ -1 & -1 & -1 \ \end{array} = (2-4)\mathbf{i} - (3+4)\mathbf{j} + (-3+2)\mathbf{k} = (-2, -7, -1)$$

3. L'équation du plan est donc :

$$-2(x-1) - 7(y-2) - (z-3) = 0$$

$$-2x - 7y - z = -2 - 14 - 3 = -19$$

Equation du plan :
$$-2x - 7y - z = -19$$

4. Distance entre un Point et un Plan:

Définition:

La distance (d) entre un point $(P(x_0, y_0, z_0))$ et un plan (ax + by + cz = d) est donnée par :

$$d = \frac{|ax_0 + by_0 + cz_0 - d|}{\sqrt{a^2 + b^2 + c^2}}$$

Exemple 4:

Calculez la distance entre le point (P(1,2,3)) et le plan (2x - 3y + 4z = 5).

Solution:

$$d = \frac{|2 \cdot 1 - 3 \cdot 2 + 4 \cdot 3 - 5|}{\sqrt{2^2 + (-3)^2 + 4^2}}$$
$$d = \frac{|2 - 6 + 12 - 5|}{\sqrt{4 + 9 + 16}}$$
$$d = \frac{|3|}{\sqrt{29}} = \frac{3}{\sqrt{29}}$$